
1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3145358, IEEE
Transactions on Dependable and Secure Computing

GUPTA ET AL.: REACHABILITY ANALYSIS FOR ATTRIBUTES IN ABAC WITH GROUP HIERARCHY 1

Reachability Analysis for Attributes in
ABAC with Group Hierarchy

Maanak Gupta, Member, IEEE , Ravi Sandhu, Fellow, IEEE , Tanjila Mawla, James Benson

Abstract—Attribute-based access control (ABAC) models are widely used to provide fine-grained and adaptable authorization based on
the attributes of users, resources, and other relevant entities. Hierarchical group and attribute based access control (HGABAC) model
was recently proposed which introduces the novel notion of attribute inheritance through group membership. GURAG was subsequently
proposed to provide an administrative model for user attributes in HGABAC, building upon the ARBAC97 and GURA administrative
models. The GURA model uses administrative roles to manage user attributes. The reachability problem for the GURA model is to
determine what attributes a particular user can acquire, given a predefined set of administrative rules. This problem has been previously
analyzed in the literature. In this paper, we study the user attribute reachability problem based on directly assigned attributes of the
user and attributes inherited via group memberships. We first define a restricted form of GURAG, called rGURAG scheme, as a state
transition system with multiple instances having different preconditions and provide reachability analysis for each of these schemes. In
general, we show PSPACE-complete complexity for all rGURAG schemes. We further present polynomial time algorithms with empirical
experimental evaluation to solve special instances of rGURAG schemes under restricted conditions.

Index Terms—Access Control, ABAC model, Reachability Analysis, Group Hierarchy, Attributes Inheritance, Attributes Administration.

✦

1 INTRODUCTION

A TTRIBUTE-based access control (ABAC) is considered as
an important authorization system among practitioners and

researchers. The system offers fine-grained and adaptable access
control solutions based on the characteristics, referred to as
attributes, of several entities. ABAC systems provide a flexible
and scalable approach to secure resources in distributed envi-
ronments and overcome some of the shortcomings of traditional
discretionary access control (DAC) [1], mandatory access control
(MAC) [2] and role based access control (RBAC) [3] models. Sev-
eral attribute based access control models have been formulated
[4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17], [18], [19], [20], [21] but a strong consensus on its definitive
characteristics is still to be achieved. More recently, hierarchical
group and attribute based access control model (HGABAC) [22]
was proposed, which introduced the notion of user and object
groups to assign attributes to users and objects respectively. In this
model, besides the direct assignment of attributes to users or ob-
jects, groups are also assigned attributes, which are then assigned
to users and objects through corresponding group memberships.
The most important advantage of this model is the ease of ad-
ministration, since multiple attributes can be assigned or removed
from users or objects through single administrative operation. The
administrative model for HGABAC, referred as GURAG, was
defined in [23], to control user attribute assignment based on
specified precondition rules and administrative roles. This model
has three sub-models UAA (user attribute assignment), UGAA
(user group attribute assignment) and UGA (user to user-group

• Maanak Gupta and Tanjila Mawla are with the Department of Computer
Science, Tennessee Tech University, Cookeville, TN, 38501, USA. E-mail:
mgupta@tntech.edu, tmawla42@tntech.edu

• Ravi Sandhu and James Benson are with the Institute for Cyber Secu-
rity and Department of Computer Science, University of Texas at San
Antonio, San Antonio, TX, 78249, USA. E-mail: ravi.sandhu@utsa.edu.
james.benson@utsa.edu

assignment) which assigns attributes to users directly or indirectly
through groups. The model extends well-known ARBAC97 [24]
administrative model and recently published GURA administrative
model [25] by introducing administration of attributes for user-
groups and managing user to groups memberships.

In ABAC, the attributes of an entity are critical in determining
its permissions. Therefore, it is an important question to compute
the attribute values that an entity can acquire through the combina-
tion of administrative roles and rules. In the context of GURAG,
it is imperative to understand the set of attribute values a user can
get based on direct assignment or via group memberships. Group
hierarchy also exists in the HGABAC operational model which
further complicates computation of the possible effective attribute
values of a user. Although security administrators are trusted to
assign attributes correctly, it is still desirable to understand the
eventual set of attribute values that a user can acquire through
multiple direct and indirect assignments. Such analysis can also
help to identify a sequence of administrative actions required by
administrators to assign certain attribute values to the users. It
further allows administrators to know the future attribute values
an entity can achieve based on predefined administrative rules,
which can help them to understand if certain permissions can ever
be granted to an entity.

As the number of attributes, attribute values and administrative
rules become large, certain anomalies become hard to detect just
by simple inspection. For example, suppose an administrative user
having role RoomAdmin is allowed to add user attribute roomAcc
with value 1.02 to a user only if the user’s attribute status has value
Grad and the user does not currently have roomAcc 2.01. Further,
a user can be assigned status attribute with value Grad only
through group G1 membership since there is no direct assignment
administrative rule for status attribute. Another administrative rule
assigns roomAcc 2.01 to a group junior to G1, thereby getting G1

with roomAcc value 2.01. Now if a user is assigned to user-group
G1, she will get all G1’s attributes, including roomAcc with value

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 08,2022 at 22:33:30 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3145358, IEEE
Transactions on Dependable and Secure Computing

GUPTA ET AL.: REACHABILITY ANALYSIS FOR ATTRIBUTES IN ABAC WITH GROUP HIERARCHY 2

2.01. It might seem that user will not be able to get roomAcc
value 1.02 and 2.01 together. However, it is possible if the junior
group to G1 is assigned value 2.01 after the user is assigned to
user-group G1. Such security policy anomalies can be discovered
with the help of reachability analysis, which checks if entities can
get certain values together or whether the entity will get particular
values based on the set of administrative rules defined through
administrative models.

In this paper we analyze the attribute reachability analysis
focusing on the effective attributes of the user achieved through
direct assignment and through user-group memberships. This work
extends the reachability analysis [26] done for GURA administra-
tive model [25], where the attributes were only directly assigned to
users without the concept of group memberships. In our analysis,
we have defined a restricted GURAG model, called rGURAG,
which considers a subset of preconditions which can be created in
GURAG. We abstract rGURAG into a state transition system
and specify three separate instances—rGURAG0

, rGURAG1

and rGURAG1+
—to cover different set of prerequisite conditions

for attributes assignments to a user or a group, and also for user to
group membership assignment. Our reachability analysis primarily
focuses on the effective set of attributes of users which is the union
of direct attributes and attributes attained by group membership.
We have defined reachability queries which is the required set
of effective attributes a user can achieve in any target state. Two
different types of reachability queries are discussed, one with the
exact values and another with the superset of attribute values. We
will show that the general reachability problem for rGURAG

schemes is PSPACE-complete. We further identify certain more
restricted cases of rGURAG schemes where the reachability
problem can be solved in polynomial time. For such instances we
will provide algorithms and a sequence of administrative requests
(referred as reachability plan) to satisfy the reachability query.

The rest of this paper is organized as follows. Section 2 reviews
the related work. In Section 3, we review the HGABAC model
and GURAG administrative model. Section 4 discusses the gener-
alized restricted rGURAG scheme and its instances. In Section 5,
we formally define our user attribute reachability problem. Formal
proofs for general rGURAG schemes are discussed in Section
6. Section 7 presents polynomial algorithms for some restricted
versions of rGURAG schemes followed by example problems
instances in Section 8 and experimental results in Section 9.
Section 10 concludes this paper.

2 RELATED WORK

Reachability analysis for user attributes was first studied by Jin
et al [26], based on the GURA administrative model [25]. In this
analysis, attribute values are assigned to users directly based on
certain attribute-based prerequisite conditions and by administra-
tors assuming roles. This work proves PSPACE-complete com-
plexity for generalized GURA scheme and also presents polyno-
mial algorithms for some conditional cases. Our work extends the
aforementioned reachability analysis where attributes are assigned
to users as well as to groups to which users are members. This
assignment of attributes to groups provides administrative benefits
in addition and removal of multiple attributes to users with a single
administrative operation.

Security policies have been widely analysed in several works
including [27], [28], [29], [30], [31], [32], [33], [34], [35], [36],
[37]. The safety analysis problem goes back to 1970’s. In general,

the safety of access control matrix (ACM) model was shown to
be undecidable in [27]. Tripunitara and Li presented an important
theoretical comparison of expressive powers of different access
control models in [28]. Many of our notations in this paper
are adapted from this work. The same authors in [29] defined
restricted forms of ARBAC97 (AATU and AAR) and provided
algorithms for analysis problems including safety and availability
in restricted forms. This work extends results from trust man-
agement policies in [30] where safety and availability security
analysis on delegation of authority is discussed. The schematic
protection model (SPM) [31] introduced typed security entities
where each entity is associated with a security type, which remains
unchanged. Sasturkar et al [32] analyse ARBAC97 administrative
policies to determine reachability and availability problems, by
establishing connections between artificial intelligence planning
problem. Jha et al [36] classified analysis problems related to
RBAC and claimed PSPACE-complete solutions for unrestricted
classes whereas NP-complete and polynomial time algorithms
for restricted subclasses. Lipton et al [34] presented a linear
time algorithm for take and grant system. Alloy language is
used for specification of role based system and analysis is done
using Alloy constraint analyser in [35]. Recently, Rajkumar and
Sandhu discussed safety problem for pre-authorization sub-model
for UCONABC in [37].

Jajodia et al [38] presented a logical language to express
positive, negative and derived authorization policies, and provided
polynomial algorithms to check completeness and consistency.
Cholvy and Cuppens [39] discussed the problem of policy con-
sistency and offered a methodology to solve it. They further sug-
gested the use of roles priorities to resolve normative conflicts in
policies. [40] provides a method to transform policy specifications
into event calculus based formal notation. It further describes the
use of abductive logical reasoning to perform a priori analysis
of various policy specifications. Jaeger et al [41] presented the
concept of access control space and its use in managing access
control policies. These spaces are used to represent permission
assignment to subjects or roles. Authors in [42] presented decision
diagram based algorithms to analyze XACML based policies and
compute the semantic differencing information between versions
of policies. Stoller et al [43] provided algorithms for ARBAC97
policies limited to rules with one positive precondition and un-
conditional role revocations. Same authors in [44] defined PAR-
BAC (parameterized ARBAC) and determined user-reachability
problem as undecidable over an infinite types of parameter. It
further assumed all parameters as atomic-valued and are changed
when the role is modified. Gupta et al [45] discussed rule-based
administrative model to control addition and removal of facts
(attributes) and rules. It further proposed an abductive algorithm
which can analyse policies even when the facts (attributes) are
unavailable based on computation of minimal sets of facts. The
work in [46] provides analysis of expressive power of generalized
temporal role-based access control (GTRBAC) which offers a set
temporal constraints to specify fine grained time based policies.

Several works [23], [24], [25], [47] have been presented
to discuss administrative models for well known access control
models. ARBAC97 [24] discusses the user to role assignment
based on the administrative rules comprising of administrative
roles and prerequisite conditions based on roles. The GURAG

administrative model [23] provides a generalized administrative
model for attributes based access control models by asserting role
as one of the several user attributes. These works define attribute

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 08,2022 at 22:33:30 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3145358, IEEE
Transactions on Dependable and Secure Computing

GUPTA ET AL.: REACHABILITY ANALYSIS FOR ATTRIBUTES IN ABAC WITH GROUP HIERARCHY 3

Fig. 1: HGABAC Conceptual Model

based preconditions and administrative roles to assign and remove
attributes from users and groups. Crampton and Loizou [47] also
presented an administrative work related to RBAC model and
developed models for role hierarchy administration.

3 BACKGROUND

In this section, we will provide an overview of reformalized
hierarchical group and attribute based access control (HGABAC)
model. We will further discuss the GURAG model [23] and its
three sub models user attribute assignment (UAA), user-group
attribute assignment (UGAA) and user to user-group assignment
(UGA). The main objective of this section is to lay the foundation
of our reachability analysis and make the reader familiar with
relevant terminologies and concepts.

3.1 HGABAC Model
This subsection discusses the reformalized HGABAC model as
defined in [23]. We have formulated this model in style of
ABACα [4] to help in our administrative model and reachability
analysis. The model is notationally different but equivalent to
HGABAC model provided by Servos et al [22]. We begin with
an informal overview of the model followed by formal definitions
of components of HGABAC relevant to our reachability analysis.

3.1.1 Model Overview
Figure 1 shows the conceptual HGABAC model. The basic com-
ponents include traditional access control entities like Users (U),
Objects (O), and Subjects (S). A user is a human being interacting
directly with a computer whereas subject is an active entity (like an
application or a process) created by the user to access resources or
objects. A user can create multiple subjects but each subject must
belong to a single user. OP represents the set of operations which
can be performed by subjects on objects. The novel approach
introduced by HGABAC model is the notion of user groups (UG)
and object groups (OG), which are a collection of users or objects
respectively. The set of user and object attributes is defined by
UA and OA respectively. Each attribute in set UA and OA is
a set-valued function, which takes different entities, like users,
objects, user-groups or object-groups, and return values from the
attribute range. As the attributes are assigned to groups also, the
prime advantage of this assignment is the inheritance of attributes
to the group’s user or object members. For example, if a user-
group ug with attribute skills having values c and java, is assigned
to user u, then u will inherit attribute skill with values c and
java from ug. Group hierarchy also exists in HGABAC (defined

TABLE 1: HGABAC Formal Model (User Attributes Only)

Basic Sets and Relations
– U, S (finite sets of users and subjects respectively).
– UG (finite set of user groups).
– UA (finite set of user attribute functions).
– For each att ∈ UA, SCOPEatt is a finite set of atomic values and
Range(att) = P(SCOPEatt) where P denotes the powerset.

– UGH ⊆ UG × UG, a partial order relation ⪰ug on UG.
Defined (Direct) Functions
– For each att ∈ UA. att: U ∪ UG → Range(att), maps

each user and user group to a subset of values in SCOPEatt.
– directUg : U → 2UG, maps each user to a subset of user groups in UG.
Derived (Effective) Functions
– effUg : U → 2UG, defined as
effUg(u) = directUg(u) ∪ (

⋃
ugi ∈ directUg(u)

{ugj | ugi ⪰ug ugj}).

– For each att ∈ UA,
• effUGatt : UG →Range(att), defined as
effUGatt(ugi) = att(ugi) ∪ (

⋃
g ∈ {ugj | ugi ⪰ug ugj}

effUGatt(g)).

• effUatt : U → Range(att), defined as
effUatt(u) = att(u) ∪ (

⋃
g ∈ directUg(u)

effUGatt(g)).

using a partial relation and shown as self loops in Figure 1) where
senior groups inherit all the attributes from their junior groups.
For example, suppose a junior group to ug, say ug′, is assigned
value c++ for attribute skill, then ug will inherit this value and
its effective values for skill will be c, java and c++. In this case
user u already assigned to user group ug will get all three values
for skill attribute. Similar assignments can be done for object and
object groups also. It should be noted that each user or object can
be assigned to multiple user or object groups and vice versa. A
subject inherits all or subset of the effective attributes of the creator
user. Each operation op ∈ OP will have an associated boolean
authorization function which specifies the policies under which a
subject is allowed to perform operation op on the objects. These
policies are specified as propositional logic formulas using the
model’s policy language and are defined by the security architect
at the time of system creation. A subject is allowed to perform
operations on an object if the effective attributes of subjects and
objects satisfy the boolean authorization function.

3.1.2 Formal Definitions (User Attributes Only)
The GURAG administrative model [23] deals with the user side
of HGABAC model reflecting the administrative relations for users
and user groups to modify their attributes. Similar administrative
model can also be extended for objects but is out of the scope of
the paper. Our reachability analysis also considers only the effec-
tive attributes of the user, and therefore, we will only formalize
the relevant sets, relations and functions pertinent to HGABAC
and required in our analysis. Table 1 defines the formal HGABAC
model covering the required definitions. An example configuration
with respect to these definitions is shown in Figure 2 and Table 2.

Basic sets and relations as shown in Table 1 include U, S
and UG representing the set of users, subjects and user groups in
the system. UA represents the set of user attribute functions for
user and user groups where each attribute function in UA is set
valued. These attribute functions can assign values to user or user
groups from the set of atomic values, represented as SCOPEatt.
The power set of SCOPEatt is defined by Range(att). Example
definitions for these sets is shown in first part of Table 2. User
group hierarchy (UGH) is a partial order relation on UG, defined

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 08,2022 at 22:33:30 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3145358, IEEE
Transactions on Dependable and Secure Computing

GUPTA ET AL.: REACHABILITY ANALYSIS FOR ATTRIBUTES IN ABAC WITH GROUP HIERARCHY 4

as ⪰ug , where ug1 ⪰ug ug2 represents ug1 is senior to ug2 or
ug2 is junior to ug1. As shown in gray the area of Figure 2,
UGH = {(G1,G1), (G2,G2), (G3,G3), (G1,G2), (G1,G3)}.
This UGH relation results in inheritance of attributes from junior
to senior group (will discuss in a moment).

Attribute values can be directly assigned to user and user
groups which is denoted by function att in UA. As defined
in Figure 2 and Table 2, user Bob is directly assigned {c,
java} for attribute function skills. Similarly, other direct attributes
are given for Bob and user groups G1,G2,G3. The function
directUg specifies the user groups to which the user is directly
assigned. In our example, Bob is directly assigned to user group
G1. We also define the effective user groups of the user (denoted
by effUg), which states all the groups to which the user is
either directly or indirectly assigned via UGH relation. Effective
user group for Bob will be {G1,G2,G3}, since Bob is directly
assigned to G1 and G1 has junior groups as G2 and G3.

The effective values of an attribute att (effUGatt) for a user
group is the union of the user’s direct attribute values and the
effective values of all its junior groups in UGH relation. Note that
this definition is well formed since ⪰ug is a partial order. For the
minimal groups ugj in this ordering, we have effUGatt(ugj) =
att(ugj), giving us base cases for this recursive definition. For
simplicity, we defined e att(ug) = effUGatt(ug) for ug ∈ UG.
Therefore, for attribute roomAcc, effective values for user group
G2 is e roomAcc(G2) = {3.02}. This value is same as its direct
value for roomAcc attribute, since G2 has no junior group in UGH.
For user group G1, e roomAcc(G1) = {2.03, 2.04, 3.02} as it
inherits values from G2 and G3. The function effUatt maps the
user to the effective values for attribute att, which is the union
of its direct values and the effective values of att for all its direct
groups. For convenience we defined e att(u) = effUatt(u) for
user u ∈ U and as shown in Table 2, the effective values for
attribute roomAcc for user Bob, written as e roomAcc(Bob) =
{1.2, 2.03, 2.04, 3.02} which is the union of its directly assigned
value for roomAcc and values inherited from group G1. Similarly
other effective attributes for user Bob can be calculated. The prime
benefit of HGABAC model, which is easy assignment of multiple
attributes to a user with user group memberships, is reflected in
this function where user u is assigned multiple attributes with
direct group membership of G1.

Subject s ∈ S created by the user u ∈ U will then assume
a subset of all effective attributes of user u. Similar effective
attributes can be assigned to objects, which is out of scope
of our reachability analysis and is not discussed. Authorization
policies are pre-defined in the system, using propositional logic
formula, for each operation in OP (set of operations) by security
administrators, which determine if a subject is allowed to perform
operations on objects, based on their effective attributes.

Note: HGABAC only allows set-valued attributes. ABAC
models generally allow set-valued as well as atomic-valued at-
tributes (for example [4]). Inheritance of values via group mem-
bership for an atomic-valued attribute is problematic since such
attributes can have only one value. Hence, while the GURA
administrative model allows both atomic and set valued attributes
the HGABAC only allows set values.

3.2 GURAG Administrative Model

The GURAG administrative model [23] was proposed to regulate
the assignment of user attribute values in HGABAC model via

Fig. 2: Example User and User Group Attributes

TABLE 2: Example Configuration as Defined in Fig 2

Basic Sets and Relations
– U = {Bob}, UG ={G1,G2,G3}.
– UA = {skills, roomAcc, studType, college}.
– SCOPE of each att in UA, denoted by SCOPEatt:

studType = {Grad, UnderGrad}, college = {COS, COE, BUS}
skills = {c, c++, java}, roomAcc = {1.2, 2.03, 2.04, 3.02}.

– UGH is given in Figure 2, highlighted in gray area.
Direct Attributes

skills(Bob) = {c, java}, roomAcc(Bob) = {1.2},
roomAcc(G2) = {3.02}, college(G2) = {COS},
roomAcc(G3) = {2.04}, studType(G1) = {Grad},
roomAcc(G1) = {2.03}.

Direct User Groups
directUg(Bob) = {G1}.

Effective User Groups
effUg(Bob) = {G1, G2, G3}

Effective User Group Attributes
e roomAcc(G2) = {3.02}, e college(G2) = {COS},
e roomAcc(G3) = {2.04}, e studType(G1) = {Grad},
e roomAcc(G1) = {2.03, 2.04, 3.02}, e college(G1) = {COS}.

Effective User Attributes
e skills(Bob) = {c, java},
e roomAcc(Bob) = {1.2, 2.03, 2.04, 3.02},
e studType(Bob) = {Grad}, e college(Bob) = {COS}.

direct user attributes, user-group attributes and user to group mem-
berships. For convenience we understand the term “assignment of
attributes” to mean “assignment of attribute values.” The model
is inspired by ARBAC97 [24] and GURA [25] administrative
models, where administrative roles and current attributes of user
and groups or user to group memberships are considered to
make future attributes or groups assignments. Administrative role
hierarchy also exists in the system where senior administrator roles
inherit permissions from junior roles. The GURAG model has
three sub models (shown in Figure 1): user attribute assignment
(UAA), user group attribute assignment (UGAA) and user to
group assignment (UGA), which regulates the direct and effective
attributes of users. It should be noted that user group hierarchy
(UGH) is considered fixed in the system and is not modified. Each
of these sub models have different sets of administrative relations
and preconditions definition using policy language as discussed in
following subsections.

The main difference between GURA and GURAG is that
GURAG includes the assignment of attributes to groups and
user to group memberships. Further, the prerequisite conditions
specified in GURAG are more expressive, as it also checks

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 08,2022 at 22:33:30 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3145358, IEEE
Transactions on Dependable and Secure Computing

GUPTA ET AL.: REACHABILITY ANALYSIS FOR ATTRIBUTES IN ABAC WITH GROUP HIERARCHY 5

TABLE 3: Administrative Requests

In the following requests:
ar ∈ AR, att ∈ UA, val ∈ SCOPEatt, u ∈ U, ug ∈ UG

– For User Attributes
add(ar, u, att, val)
delete(ar, u, att, val)

– For User Group Attributes
add(ar, ug, att, val)
delete(ar, ug, att, val)

– For User to User-Group Membership
assign(ar, u, ug)
remove(ar, u, ug)

TABLE 4: GURAG Administrative Model

– User Attribute Assignment (UAA):
For each att in UA,

canAddUatt ⊆ AR× C× SCOPEatt

canDeleteUatt ⊆ AR× C× SCOPEatt

– User Group Attribute Assignment (UGAA):
For each att in UA,

canAddUGatt ⊆ AR× C× SCOPEatt

canDeleteUGatt ⊆ AR× C× SCOPEatt

– User to User Group Assignment (UGA):

canAssign ⊆ AR× C×UG

canRemove ⊆ AR× C×UG

the current effective attributes or effective group memberships of
entities to make future assignments.

3.2.1 Administrative Requests
Definition 1 (Administrative Requests). The attributes and
group memberships of entities are changed by administrative
request made by administrators with certain administrative roles
as defined in Table 3, where AR is the finite set of administrative
roles. The administrative request add(ar, u, att, val) is made
by administrator with role ar to add value val to attribute att
of user u. Similar administrative requests are used for groups
also. Administrative requests assign and remove are required for
managing group memberships. Each administrative request can
add or delete a single attribute value from a user or group.

3.2.2 Administrative Rules
Definition 2 (Administrative Rules). Administrative rules are
tuples in administrative relations which specify conditions under
which administrative requests are authorized. Each of the three
sub-models (UAA, UGAA, UGA) in GURAG model have ad-
ministrative relations to define these rules.

The UAA sub-model deals with addition or deletion of at-
tributes from the user. It has two administrative relations shown in
Table 4, where a rule ⟨ar, c, val⟩ ∈ canAddUatt authorizes
request add(ar, u, att, val) if user u satisfies precondition
c. Similarly, rule ⟨ar, c, val⟩ ∈ canDeleteUatt authorizes
delete(ar, u, att, val) requests if user u satisfies precondition
c. In UAA, the precondition c ∈ C includes only current direct
and effective attributes of user u. Similar relations also exist for
administering attributes of user groups as discussed in sub-model

UGAA. In UGAA, c ∈ C involves current direct or effective
attributes of the group whose attributes are modified.

The UGA sub-model has two relations shown in lower part
of Table 4. The rule ⟨ar, c, ug⟩ ∈ canAssign authorizes user to
group assignment request assign(ar, u, ug) if user u satisfies
the precondition c. Similarly rule ⟨ar, c, ug⟩ ∈ canRemove
authorizes remove request remove(ar, u, ug) if user u satisfies
precondition c. The precondition c ∈ C involves both current
direct or effective attributes and groups of user u.

The expressive power of the GURAG model is primarily
determined by the richness of the policy language used to define
the preconditions C in Table 4. The most general language for this
purpose is defined in [23], similar to the most general language of
[25] (but without atomic attributes).

Note: In the original GURAG definition [23], the administra-
tive relations of Table 4 are defined with 2SCOPEatt substituted for
SCOPEatt and 2UG substituted for UG. With the modification
of Table 4 the administrative relations can grow linearly in the
size of SCOPEatt and UG. This does not materially impact the
complexity analysis of the reachability problem.

3.2.3 GURAG scheme

For purpose of our reachability analysis, we express the GURAG

model according to the notations developed in [28], following the
treatment in [26]. The GURAG scheme is presented as a state
transition system where each state consists of direct attribute as-
signments for each attribute of every user and group, and also each
user to groups membership. A transition between states occurs
when an authorized administrative request changes either direct
user or group attribute, or changes user to group membership. The
general definition for GURAG scheme is as follows.

Definition 3 (GURAG Scheme). A GURAG scheme is a state
transition system ⟨U, UA, AR, SCOPE, UG, ⪰ug , Ψ, Γ, δ⟩
where,

(i) U, UA, AR, UG, ⪰ug are as defined in Tables 1 and 3.
(ii) SCOPE = ⟨SCOPEatt1 . . . SCOPEattn⟩ where atti ∈

UA, is the collection of scopes of all attributes.
(iii) Ψ is the collection of all administrative rules in UAA, UGAA

and UGA sub-models.
(iv) Γ and δ are set of states and transition function respectively,

defined in following parts of this subsection.

3.2.4 Direct State

Γ is the finite set of states where each state γ ∈ Γ records directly
assigned attributes of each user and user group, along with user to
groups membership. The direct user attribute assignment in state
γ, denoted by UAAγ , contains tuples of the form ⟨u, att, val⟩
for every u ∈ U and every att ∈ UA such that att(u) = val
and val ∈ Range(att) in state γ. To ensure uniqueness of user
attribute values we require the following.

⟨u, att, val1⟩ ∈ UAAγ ∧ ⟨u, att, val2⟩ ∈ UAAγ ⇒ val1 = val2

Similarly, direct user group attribute assignment in state γ, denoted
by UGAAγ , contains tuples of the form ⟨ug, att, val⟩ for every
ug ∈ UG and every att ∈ UA such that att(ug) = val and
val ∈ Range(att) in state γ, with the following uniqueness
requirement.

⟨ug, att, val1⟩ ∈ UGAAγ ∧ ⟨ug, att, val2⟩ ∈ UGAAγ ⇒ val1 = val2

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 08,2022 at 22:33:30 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3145358, IEEE
Transactions on Dependable and Secure Computing

GUPTA ET AL.: REACHABILITY ANALYSIS FOR ATTRIBUTES IN ABAC WITH GROUP HIERARCHY 6

TABLE 5: Transition Function

(1) γ1 and γ2 are the source and target states respectively.
(2) Let : ar ∈ AR, u ∈ U, ug ∈ UG, att ∈ UA, val′ ∈ SCOPEatt, ug′ ∈ UG.
(3) Satisfyu: U × C× Γ → {true, false}, returns true if user u ∈ U satisfies precondition c ∈ C in state γ ∈ Γ, else false.
(4) Satisfyug : UG × C× Γ → {true, false}, returns true if user group ug ∈ UG satisfies precondition c ∈ C in state γ ∈ Γ,

else false.
(5) Satisfyu−ug : U × C× Γ → {true, false}, returns true if user u ∈ U satisfies precondition c ∈ C in state γ ∈ Γ, else false.

Request Pre-Conditions Target State

add(ar, u, att, val′)
∃ ⟨ar, c, val′⟩ ∈ canAddUatt.
(Satisfyu(u, c, γ1) ∧
val′ /∈ attγ1(u))

attγ2(u) = attγ1(u) ∪ {val′},
attγ2(ug) = attγ1(ug), directUgγ2

(u) = directUgγ1
(u),

UAAγ2 = UAAγ1 \ ⟨u, att, attγ1(u)⟩ ∪ ⟨u, att, attγ2(u)⟩.

delete(ar, u, att, val′)
∃ ⟨ar, c, val′⟩ ∈ canDeleteUatt.
(Satisfyu(u, c, γ1) ∧
val′ ∈ attγ1

(u))

attγ2
(u) = attγ1

(u) \ {val′},
attγ2

(ug) = attγ1
(ug), directUgγ2

(u) = directUgγ1
(u),

UAAγ2
= UAAγ1

\ ⟨u, att, attγ1
(u)⟩ ∪ ⟨u, att, attγ2

(u)⟩.

add(ar, ug, att, val′)
∃ ⟨ar, c, val′⟩ ∈ canAddUGatt.
(Satisfyug(ug, c, γ1) ∧
val′ /∈ attγ1

(ug))

attγ2
(ug) =attγ1

(ug) ∪ {val′},
attγ2

(u) = attγ1
(u), directUgγ2

(u) = directUgγ1
(u),

UGAAγ2
= UGAAγ1

\ ⟨ug, att, attγ1
(ug)⟩ ∪ ⟨ug, att, attγ2

(ug)⟩.

delete(ar, ug, att, val′)
∃ ⟨ar, c, val′⟩ ∈ canDeleteUGatt.
(Satisfyug(ug, c, γ1) ∧
val′ ∈ attγ1(ug))

attγ2(ug) = attγ1(ug) \ {val′},
attγ2(u) = attγ1(u), directUgγ2

(u) = directUgγ1
(u),

UGAAγ2 = UGAAγ1 \ ⟨ug, att, attγ1(ug)⟩ ∪ ⟨ug, att, attγ2(ug)⟩.

assign(ar, u, ug′)
∃ ⟨ar, c, ug′⟩ ∈ canAssign.
(Satisfyu−ug(u, c, γ1) ∧
ug′ /∈ directUgγ1

(u))

directUgγ2
(u) = directUgγ1

(u) ∪ {ug′}
attγ2

(u) = attγ1
(u), attγ2

(ug) = attγ1
(ug),

UGAγ2
= UGAγ1

\ ⟨u, directUgγ1
(u)⟩ ∪ ⟨u, directUgγ2

(u)⟩.

remove(ar, u, ug′)
∃ ⟨ar, c, ug′⟩ ∈ canRemove.
(Satisfyu−ug(u, c, γ1) ∧
ug′ ∈ directUgγ1

(u))

directUgγ2
(u) = directUgγ1

(u) \ {ug′}
attγ2(u) = attγ1(u), attγ2(ug) = attγ1(ug),

UGAγ2
= UGAγ1

\ ⟨u, directUgγ1
(u)⟩ ∪ ⟨u, directUgγ2

(u)⟩.

Finally, direct user to group assignment in state γ, denoted UGAγ ,
contains tuples of the form ⟨u, val⟩ for every u ∈ U such that
directUg(u) = val and val ∈ 2UG in state γ, with the following
uniqueness requirement.

⟨u, val1⟩ ∈ UGAγ ∧ ⟨ug, val2⟩ ∈ UGAγ ⇒ val1 = val2

Note that information in a state can be used to calculate
the effective attributes for user or group and effective user to
groups membership in that state. For convenience we understand
the notation attγ(u), attγ(ug) and directUgγ(u) to denote the
values of these functions in state γ for u ∈ U and ug ∈ UG.

3.2.5 Transition Function
Any change in the direct state records (UAAγ ,UGAAγ ,UGAγ)
will transform the current state to a new state. The transition func-
tion specifies the change from one state to another in a GURAG

system based on current direct or effective values and administra-
tive requests, as shown in Table 5. Formally, δ : Γ× REQ → Γ,
where REQ is the set of possible administrative requests.

4 RESTRICTED GURAG (rGURAG)
In this section, we introduce a restricted form of GURAG admin-
istrative model, called rGURAG, used in our attribute reachability
analysis. This restricted form allows a subset of the precondition
language defined for GURAG [23], whereby our analysis also
establishes lower bound results on the complexity analysis for
richer GURAG model. We first present a generalized policy
language for rGURAG, followed by three specific instances—
rGURAG0 , rGURAG1 , and rGURAG1+ .

The left side of Figure 3 shows the relation between these
schemes, while the right side shows the rGURA schemes dis-
cussed in [26]. At a high level, rGURAG0 and rGURAG1 add
group attributes respectively to rGURA0and rGURA1, while
rGURAG1+ further adds administration of user membership in
groups. Thereby, in rGURAG0 and rGURAG1 the administrative
relations canAssign and canRemove are empty whereas they are
populated in rGURAG1+ . Table 6 provides example administra-
tive rules for each rGURAG instance, as will be explained below.

Definition 4 (rGURAG Scheme). The rGURAG scheme uses
the policy grammar below, to specify preconditions C in Table 4,

φ ::= ¬ φ | φ ∧ φ | svalue ∈ direct | svalue ∈ effective
svalue ::= sval1 | sval2 | . . . | svalm

where SCOPEatt = {sval1, sval2, . . . , svalm}. The two
non-terminals direct and effective, are individually defined in its
three instances—rGURAG0 , rGURAG1 and rGURAG1+—in
following subsections.

4.1 The rGURAG0 Scheme
In rGURAG0 scheme, preconditions for rules in canAddUatt and
canDeleteUatt relations only allow the same attribute att whose
value is added or deleted from user. Therefore, conditions for user
u have non-terminals direct and effective defined as follows.

direct ::= att(u) & effective ::= e att(u)
Similarly, the administrative relations in canAddUGatt and
canDeleteUGatt for user group ug have direct and effective
defined as follows.

direct ::= att(ug) & effective ::= e att(ug)

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 08,2022 at 22:33:30 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3145358, IEEE
Transactions on Dependable and Secure Computing

GUPTA ET AL.: REACHABILITY ANALYSIS FOR ATTRIBUTES IN ABAC WITH GROUP HIERARCHY 7

TABLE 6: Example Rules in rGURAG0
, rGURAG1

and rGURAG1+
Schemes

Relation Admin Role Pre-requisite Condition Value
Rules in rGURAG0 scheme

canAddUskills DeptAdmin c ∈ e skills(u) ∧ ¬ (java ∈ skills(u)) c++
canDeleteUroomAcc BuildAdmin 3.02 ∈ e roomAcc(u) 1.2
canAddUGcollege UnivAdmin ¬ (COE ∈ college(ug)) COS

canDeleteUGroomAcc BuildAdmin 2.04 ∈ e roomAcc(ug) 2.03
Rules in rGURAG1 scheme further add

canAddUstudType DeptAdmin java ∈ e skills(u) ∧ 2.03 ∈ roomAcc(u) Grad
canDeleteUroomAcc BuildAdmin 3.02 ∈ roomAcc(u) ∧ COS ∈ college(u) 3.02
canAddUGskills DeptAdmin COS ∈ college(ug) ∧ UnderGrad ∈ e studType(ug) java

canDeleteUGcollege UnivAdmin 2.04 ∈ e roomAcc(ug) ∧ 2.03 ∈ e roomAcc(ug) BUS
Rules in rGURAG1+

scheme further add
canAssign DeptAdmin 1.02 ∈ e roomAcc(u) ∧ ¬ (BUS ∈ college(u)) ∧ G2 ∈ directUg(u) G1

canRemove GroupAdmin G1 ∈ effUg(u) ∧ G2 ∈ directUg(u) G2

Fig. 3: rGURAG (Left Side) and rGURA (Right Side) Schemes

The examples for rGURAG0
shown in Table 6 conform to these

restrictions. Note that the attribute being updated is given as the
subscript in the Relation column and the conditions in the Pre-
requisite Condition column only involve this attribute.

4.2 The rGURAG1 Scheme
In rGURAG1

scheme, the precondition can include any attribute
from the set of attributes. Therefore, conditions in rules for
canAddUatt and canDeleteUatt relations for user u have direct
and effective defined as follows where atti ∈ UA.

direct ::= atti(u) & effective ::= e atti(u)
Similarly, the conditions for user group ug in relations
canAddUGatt and canDeleteUGatt have non-terminals direct
and effective defined as follows.

direct ::= atti(ug) & effective ::= e atti(ug)
The added rules for rGURA1in Table 6 illustrate this, where
the preconditions involve attributes other than the one being
updated. The earlier rules for rGURAG0 continue to be valid
for rGURA1.

4.3 The rGURAG1+ Scheme
The rGURAG1+ scheme allows changes in user group member-
ships besides modifying the attributes of user and user groups.
Therefore, in addition to the grammar supported by rGURAG1

scheme, rGURAG1+ also includes user’s direct or effective
group memberships as preconditions in rules for canAssign and
canRemove administrative relations. The additional grammar to
specify such preconditions is specified below:

φ ::= ug ∈ directUg(u) | ug ∈ effUg(u)

In Table 6, rule in canAssign includes effective values for
roomAcc, direct values for college attribute and direct groups
of user u.

5 REACHABILITY PROBLEM DEFINITION

In this section, we provide a formal definition of our attribute
reachability problem along with the reachability query and differ-
ent query types supported in our analysis. The general approach
is similar to that of [26], except that atomic-valued attributes are
excluded (as noted in Section 3.1.2) and reachability is defined
with respect to effective rather than direct attributes (Research in
[26] does not have the notion of effective attributes).

The user attribute reachability analysis problem (or reacha-
bility problem) is based on the effective attributes of the user.
Informally, the problem can be stated as: Given an initial transition
system state with a set of attribute assignments of the user, the
user’s group memberships and the attributes of all the user’s
member groups, can administrators with a given set of admin-
istrative roles issue one or more administrative requests, which
transition to a target state having the set of specified effective
attributes for that user? We highlight some simplifications in our
reachability analysis process. First, as the changes made to the
attributes or group memberships of one user do not affect the
attributes or group memberships of another user, our analysis will
only determine the effective attributes of a single user of interest
and hence will only consider attribute assignment of that user, its
group memberships and attributes of these groups. Formally, we
assume U = {u} in our analysis [26]. Second, as the reachability
analysis focuses on powers of a certain set of administrative roles
SUBAR ⊆ AR, we do not consider the administrative rules
specified for roles outside of SUBAR. In other words, we can
assume AR = SUBAR. These simplifications gives our analysis
more convenient statements without losing generality.

Definition 5 (Reachability Query). A reachability query q ∈
Q specifies a subset of effective values of a user for some attributes
in any target state. Formally,
q ⊆ {⟨u, e att, vset⟩ | u ∈ U, att ∈ UA, vset ∈ Range(att)}

In the example problems discussed in Section 8, we will use the
following notation to specify our query, which is equivalent to the
notation defined above:

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 08,2022 at 22:33:30 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3145358, IEEE
Transactions on Dependable and Secure Computing

GUPTA ET AL.: REACHABILITY ANALYSIS FOR ATTRIBUTES IN ABAC WITH GROUP HIERARCHY 8

q ⊆ {e att(u) = vset | u ∈ U, att ∈ UA, vset ∈ Range(att)}

For example,
q = {⟨u, e roomAcc, {2.04}⟩, ⟨u, e skills, {c}⟩ ,

⟨u, e college, {COS,COE}⟩} is equivalent to
q = {e roomAcc(u) = {2.04}, e skills(u) = {c},

e college(u) = {COS,COE}}.
Two types of reachability query are defined in the system. A

query is called “strict” satisfied if every effective attribute value
specified in the query is exactly the same as that in the target state.
A query is called “relaxed” satisfied by the user if in the target
state every effective attribute value of the user is a superset of the
corresponding attribute values specified in the reachability query.
For example, let UA = {skills}, U = {Bob} and reachability query
q = ⟨Bob, e skills, {c, java}⟩. For strict query type, q can be
satisfied in states γ′ ∈ Γ where e skillsγ′(u) = {c, java}. In
relaxed query type, q can be satisfied by any state γ′′ ∈ Γ where
e skillsγ′′(u) = setval and {c, java} ⊆ setval. For ease of
understanding, we represent the effective value of attribute att for
user u in state γ ∈ Γ as e attγ(u). The formal definition for
reachability query types is given below:

Definition 6 (Reachability Query Types). For any rGURAG

scheme ⟨U, UA, AR, SCOPE, UG, ⪰ug , Ψ, Γ, δ⟩, we formally
define two Reachability Query Types as:

• RP= or strict satisfied queries have the entailment function
⊢RP=

: Γ × Q → {true, false} which returns true (i.e.,
γ ⊢RP=

q) if ∀ ⟨u, e att, vset⟩ ∈ q. e attγ(u) = vset.
• RP⊇ or relaxed satisfied queries have the entailment function
⊢RP⊇ : Γ × Q → {true, false} which returns true (i.e.,
γ ⊢RP⊇ q) if ∀ ⟨u, e att, vset⟩ ∈ q. e attγ(u) ⊇ vset.

It is clear that given a scheme and problem instance, if RP= query
problem is satisfied then RP⊇ problem is also satisfied, but not
vice versa. The following two definitions are same as defined in
[26], but we will state them for the sake of completeness.

Definition 7 (Reachability Plan). A Reachability Plan or plan
is a sequence of authorized administrative requests to transition
from initial state to the target state. For any rGURAG scheme
⟨U, UA, AR, SCOPE, UG, ⪰ug , Ψ, Γ, δ⟩ and states γ0, γ′ ∈ Γ,
reachability plan is a sequence of authorized requests ⟨ req1, req2,
. . ., reqn⟩ where reqi ∈ REQ (1 ≤ i ≤ n), to transition from an
initial state γ0 to target state γ′ if: γ0

req1→ γ1
req2→ γ2 . . .

reqn→ γ′.
The arrow denotes a successful transition from one state to another
due to an administrative request reqi authorized by rules in Ψ. We
write γ0

planΨ⇝ γ′ to abbreviate the complete plan.

Informally, a reachability problem deals if there exists a
reachability plan to transition from an initial state to some target
state where the effective attribute values of the user satisfy a
particular reachability query. Formally,

Definition 8 (Reachability Problems). Given any rGURAG

scheme ⟨U, UA, AR, SCOPE, UG, ⪰ug , Ψ, Γ, δ⟩, the attribute
reachability problem is as follows:

• RP= or strict reachability problem instance I is of the form
⟨γ0, q⟩ where γ0 ∈ Γ, q ∈ Q and checks if there exist a
reachability plan P such that γ0

PΨ⇝ γ′ and γ′ ⊢RP=
q.

• RP⊇ or relaxed reachability problem instance I is of the
form ⟨γ0, q⟩ where γ0 ∈ Γ, q ∈ Q and checks if there exist
a reachability plan P such that γ0

PΨ⇝ γ′ and γ′ ⊢RP⊇ q.

6 PSPACE-COMPLETE REACHABILITY

In this section, we present our reachability analysis results for
different rGURAG schemes shown in Figure 3. These results are
extensions to the results from GURA reachability analysis [26]
and also considers groups for assigning attributes to its member
users. Our analysis will prove that rGURAG schemes in Figure 3
in general are PSPACE-complete. For such schemes we will first
show that all rGURAG schemes are in PSPACE and then reduce
a known PSPACE-complete problem to our problem schemes. In
the next section, we will provide polynomial algorithms for some
restricted rGURAG problem classes.

Lemma 1. Reachability problem for every rGURAG scheme in
Figure 3 is in PSPACE.

Proof. Each state of a non-deterministic Turing machine stores
some information to predict future states. This information takes
polynomial amount of space and therefore all instance are in
PSPACE. This proof is similarly stated for GURA schemes in
[26] and more details are presented in appendix.

Since all rGURAG schemes are in PSPACE, it will now be
sufficient to prove that all rGURAG schemes are PSPACE-hard,
which will conclude that the schemes are PSPACE-complete.

Corollary 1. Reachability query types RP⊇ and RP= for
rGURAG schemes in general is PSPACE-complete.

Proof. Recall that Figure 3 defines the relation between different
rGURAG schemes and rGURA0. The reachability analysis
for rGURA0 scheme discussed in [26] describes the scheme
is PSPACE-complete. This scheme only allows change in at-
tributes of the user. With respect to rGURAG0

, it can be said
that rGURA0 scheme is a sub-problem without user groups.
Therefore, the reduction from known PSPACE-complete prob-
lem (rGURA0) to rGURAG0

is straightforward, which makes
rGURAG0

as PSPACE-hard. Further, using Lemma 1, it is
justified to claim that rGURAG0

is in PSPACE-complete.
Similar claim can also be made for rGURAG1

scheme where
rGURAG0

is its sub-problem involving only the same attribute in
preconditions for rules (Ψ). Therefore, rGURAG1

is PSPACE-
hard and using Lemma 1, it is also PSPACE-complete. The
analysis for rGURAG1+

is also alike the above two schemes
where rGURAG1

is a sub-problem of rGURAG1+
, therefore,

rGURAG1+
is in PSPACE-hard and hence PSPACE-complete

also. More details are present in appendix.

7 POLYNOMIAL REACHABILITY FOR RESTRICTED
CASES

In previous section, we proved that attribute reachability for any
rGURAG scheme in general is PSPACE-complete. However,
we have identified some instances of rGURAG schemes which
can be solved in polynomial time under precondition restrictions
on administrative rules (Ψ). The practicality and use of these
restricted instances are discussed in the example problem use-case
discussed in Section 8. Similar to [26], the following restrictions
are considered where D and SRd are always imposed together:

• No negation (N): Ψ satisfies N if no administrative rules in
Ψ use negation in preconditions.

• No deletion (D): Ψ satisfies D if for each attribute att ∈UA,
canDeleteUatt and canDeleteUGatt are empty. Further,

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 08,2022 at 22:33:30 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3145358, IEEE
Transactions on Dependable and Secure Computing

GUPTA ET AL.: REACHABILITY ANALYSIS FOR ATTRIBUTES IN ABAC WITH GROUP HIERARCHY 9

canRemove rules are also empty, meaning, attribute values
or groups once added cannot be deleted.

• Single rule with direct values (SRd): Ψ satisfies SRd

if for each attribute att ∈ UA, there is at most one pre-
condition associated with a particular value assignment in
rules of canAddUatt or canAddUGatt. Therefore, an attribute
value pair can either be added through user directly or
through groups but not both. Similar, condition also exists
for canAssign rules. Further, only direct conjuncts i.e. val ∈
atti(u), val ∈ atti(ug) or ug ∈ directUg(u) are allowed
in prerequisite condition.

These restrictions are important in different kinds of attributes and
scenarios. For instance, No negation (N) restrictions have signifi-
cance when attributes like course or degree are added to entities.
It is likely that adding a new value for course attribute do not
require negation of another course as the precondition. Similarly,
No deletion (D) restriction can apply for attributes like skills
where a value once added to any entity will never be deleted.
Ideally, an individual attaining some skill-set will never loose
them. The SRd restriction allows only unique preconditions in
administrative relations for user and user groups. This restriction
essentially separates set of attributes into two parts, one which
can be assigned only to user directly and others assigned through
groups. For example, attribute like roomAccess can be assigned
through group as it is usually common to all users with certain
characteristics, and if value changes for one user, it will change
for all others too. Attribute like advisor is assigned individually
to each user as change for one user may not change it in others.
Therefore, these restrictions are relevant in applications.

We now discuss reachability analysis for restricted rGURAG

schemes. The notation [rGURAGx, Restriction] specifies
special instances of rGURAG scheme where subscript x takes
a value in 0, 1 or 1+ representing – rGURAG0 , rGURAG1 or
rGURAG1+ and Restriction represents combinations of N,
D and SRd specifying that administrative rules Ψ in the scheme
satisfy these restrictions. For example, [rGURAG0

– N] denotes
rGURAG0

scheme where rules in Ψ satisfy N.
As shown in Figure 3, rGURAG1+

scheme is the most
expressive scheme where new attribute values are achieved by
direct assignment to the user or to its effective groups, and also by
changing user to group memberships. It is clear from the previous
discussions that the scheme covers rGURAG1

and rGURAG0
,

which only allow change in attributes of the user or its effective
groups. Therefore, we will only discuss algorithm for restricted
rGURAG1+

scheme which can be easily used for other two
schemes by simply ignoring irrelevant administrative rules.

7.1 Reachability plan for RP= in [rGURAG1+ – N]

First we will discuss reachability query type RP= for
[rGURAG1+−N] scheme which can be solved in polynomial
time by Algorithm 1. This algorithm extends the algorithm
discussed for rGURA1 [26] by including user group attribute
assignments and also modification in user to group memberships.
The added restriction to this scheme (N) requires preconditions
in rules without negation conjuncts and therefore, administrative
rules cannot specify addition of new attributes based on the
absence of some other values. Hence, the current attribute values
of user or groups are not required to be removed for adding new
values or group, which precludes the need for investigating any
canDeleteUatt, canDeleteUGatt and canRemove rules.

The algorithm starts with the current set of attribute values and
group memberships for user, and the attribute values for its mem-
ber groups. It traverse all relevant canAddUatt, canAddUGatt or
canAssign rules to add new values to the attributes of user or to its
effective user groups and also add new groups to the user. Since,
the query type is restricted, the algorithm first checks if the current
effective attributes of user are not more than what required in the
query (line 4). If the current values are extra, the algorithm returns
false, since there are no delete administrative relations to delete
such values. The while loop (line 5–24) terminates when either
the query is satisfied or when no other values can be added from
the rules in canAddUatt and canAddUGatt or no new groups can
be added to the user using canAssign rules. When adding a new
value to the user or its effective groups, the corresponding value
must be checked against the query. If the value is present in the
query, the addition is allowed. Similar check is also done to add
new groups the user, where all the attributes present in the group
should also be a part of the query. The order to add these values
or new groups is independent to each other, since no negation
conjuncts are required and presence of extra values in user or
group will not stop from adding new values. Also, if later a new
value is added to an entity, the while loop will again consider the
relevant rules to add values based on the already added values.
When a new attribute is added to user, its effective groups or a
new group is assigned to the user, its corresponding administrative
request is appended to the reachability plan plan. If the query is
satisfied, the algorithm returns the corresponding reachability plan
plan or returns false stating that the query is unsatisfiable and user
will not achieve desired effective attributes as mentioned in query.

Theorem 1. Reachability query type RP= for scheme
[rGURAG1+

−N] is P.

Proof. Algorithm 1 describes the polynomial time algorithm.
Complexity: The complexity is determined by the number of
times the administrative rules in canAddUatt, canAddUGatt or
canAssign are traversed. If only one value is added by each of the
rules, the complexity of Algorithm 1 is O(|canAssign| × |UG| +
((
∑

att∈UA |SCOPEatt|) × (|canAddUatt| + |canAddUGatt| ×
|UG|))), where |canAddUatt|, |canAddUGatt| and |canAssign|
represents number of the administrative rules in these relations
and |UG| represents the maximum number of groups assigned to
the user. Clearly, the complexity of algorithm is polynomial.

The RP⊇ query type for [rGURAG1+
−N] also has a poly-

nomial algorithm, where the extra conditions to check the query
before adding new values is removed since we can have values
even if they are not required in the query. The complexity will
remain the same as shown in Theorem 1. Similar algorithm can
also be devised for RP= and RP⊇ query type in [rGURAG1

−N]
and [rGURAG0

−N] schemes where canAssign rules will not be
considered into the while loop for adding new groups to the user.
Hence these schemes can be also solved in polynomial time.

7.2 Reachability plan for RP= in [rGURAG1+ – D,SRd]

We will now consider another restricted instance for rGURAG1+ ,
[rGURAG1+

−D,SRd] which can be solved by Algorithm 2
and 3. The scheme has two restrictions, D which removes the
need to consider delete administrative relations – canDeleteUatt,
canDeleteUGatt and canRemove. The SRd restriction allows
single preconditions for each attribute value pair or user group,

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 08,2022 at 22:33:30 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3145358, IEEE
Transactions on Dependable and Secure Computing

GUPTA ET AL.: REACHABILITY ANALYSIS FOR ATTRIBUTES IN ABAC WITH GROUP HIERARCHY 10

Algorithm 1 Plan Generation for RP= in [rGURAG1+
– N]

1: Input: problem instance I = ⟨γ0, q⟩ Output: plan or false
2: plan := ⟨⟩; ▷ Initialize plan
3: s := γ0; ▷ Initialize with state s
4: if (∃ att ∈ UA ∃ ⟨u, e att, vset⟩ ∈ q). e att(u) − vset ̸= ∅ then return false; ▷ Check if state s has more values than query

▷ Assign attribute values required in query to the user or its effective groups
5: while (s ⊬RP= q ∧
6: ((∃ att′ := att ∈ UA ∃ rule := ⟨ar, c, val⟩ ∈ canAddUatt′). (Satisfyu(u, c, s) ∧ val /∈ att′(u) ∧ ∃ ⟨u, e att′, vset⟩ ∈ q. val ∈ vset))
7: ∨
8: ((∃ att′ := att ∈ UA ∃ rule := ⟨ar, c, val⟩ ∈ canAddUGatt′). (∃ ug′ := ug ∈ effUg(u). Satisfyug(ug

′, c, s) ∧ val /∈ att′(ug′) ∧
9: ∃ ⟨u, e att′, vset⟩ ∈ q. val ∈ vset))

10: ∨
11: ((∃ ug′′ := ug ∈ UG ∃ rule := ⟨ar, c, ug′′⟩ ∈ canAssign). (Satisfyu−ug(u, c, s) ∧ ug′′ /∈ directUg(u) ∧
12: ∀ att ∈ UA ∃⟨u, e att, vset⟩ ∈ q. e att(ug′′) ⊆ vset))) do
13: s := s ≪ rule; ▷ apply rule on state s
14: switch ▷ append administrative request to plan
15: case rule ∈ canAddUatt′ :
16: plan := plan.append(add(ar, u, att′, val));
17: break;
18: case rule ∈ canAddUGatt′ :
19: plan := plan.append(add(ar, ug′, att′, val));
20: break;
21: case rule ∈ canAssign:
22: plan := plan.append(assign(ar, u, ug′′));
23: break;
24: end while
25: if s ⊢RP= q then return plan else return false end if ▷ check if reachability query is satisfied

Algorithm 2 Group Assignment Plan Generation for RP= in [rGURAG1+
– D, SRd]

1: Input: problem instance I = ⟨γ0, q⟩ Output: planug

2: if γ0 ⊢RP= q then return planug := ⟨⟩; ▷ Check initial state
3: Gug := ⟨Vug , Eug⟩; Vug := {ug | ∃ ug ∈ UG. ∃ ug /∈ directUg(u). ∃ ⟨ar, c, ug⟩ ∈ canAssign(u). ∀ att ∈ UA ∃⟨u, e att, vset⟩ ∈ q. e att(ug) ⊆

vset }; Eug := ∅; ▷ Construct a directed graph
4: for each pair of nodes ((ug1, ug2) ∈ Vug) do
5: if ((∃⟨ar, c, ug2⟩ ∈ canAssign. “(ug1 ∈ directUg(u))” is a conjunct in c) ∨
6: (∃⟨ar, c, ug1⟩ ∈ canAssign. “¬(ug2 ∈ directUg(u))” is a conjunct in c))
7: then Eug := Eug ∪ {⟨ug1, ug2⟩}; end if ▷ Add edges
8: end for
9: if graph Gug has cycles then remove the cyclic paths and planug := sequence of assign requests corresponding to the topological sort of Gug ;

with only direct values as conjuncts in preconditions. This restric-
tion results in rules which can be either satisfied by user or any of
its effective groups but not both. We have divided the algorithm
into two algorithm for ease of understanding and to show how
these algorithms can be reused in other schemes also.

Algorithm 2 is used to add new groups to the user. Since
the preconditions only involves user’s direct groups as conjuncts
(SRd restriction), the addition of groups is independent of the
attributes and can be calculated separately. The administrative
rules in this scheme can have negation conjuncts in preconditions,
therefore, the order of assigning new groups can be mutually
dependent. The algorithm first creates a directed graph where
vertices Vug are user groups and edges Eug are directed based
on conjuncts in precondition of rules in canAssign. In line 3,
before adding a group to Vug , it is checked that all the attributes
in group are required in query, as no extra attributes are allowed
in RP= and deletion is not allowed. Line 4 – 8 creates edges
in the graph, if a user group ug1 is a negation conjunct to add
another group ug2 or ug2 is a precondition for ug1, then edge
is drawn from ug2 to ug1, signifying that ug2 should be added
before ug1. If cycles exists in the created graph then remove the
cyclic paths and create topological sort on the remaining graph.
The set of administrative requests based on the sort will provide
the planug for user to groups assignment. Once the requests are
executed in order, new effective groups are calculated for the user
and computation continues from Algorithm 3.

Algorithm 3 extends algorithm defined in [26], which checks
the final set of values required to satisfy the reachability query
and find canAddUatt or canAddUGatt rules to add those values.
Further to add the values in precondition of rules, it may in-turn
need some other rules and values and so on. Therefore, algorithm
traverses backward to find the set of values required to satisfy the
query. Since the values can be achieved by user directly or from
any of its effective groups, this backward search is done for user
and all its effective groups as calculated by Algorithm 2.

The algorithm starts by checking if the query is satisfied in the
current state, in that case empty plan is returned signifying that
with only new group assignments query is satisfied. Otherwise, it
creates a set of attribute value pair for values required in query
q and also for current attributes of user and its effective groups
(line 4-5). Line 6 checks if the union of current values of the
user or its effective groups is not more than values required in
q. If extra values are there, the algorithm returns false, as no
delete rules are allowed. The algorithm calculates all positive
precondition attribute value pairs required by user or its effective
groups to get values in toadd (line 7-17). Therefore, the final set of
values required includes the values in query (toadd) and positive
preconditions in user or its effective groups excluding their current
values. Line 18 checks if rules exists to add all required attribute
value pair or else returns false, as the values can not be added.
Line 19-21 calculate negative conjuncts in rules required to add
required values and returns false if the such values are present in

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 08,2022 at 22:33:30 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3145358, IEEE
Transactions on Dependable and Secure Computing

GUPTA ET AL.: REACHABILITY ANALYSIS FOR ATTRIBUTES IN ABAC WITH GROUP HIERARCHY 11

Algorithm 3 Plan Generation for RP= in [rGURAG1
– D, SRd]

1: Input: problem instance I = ⟨γ0, q⟩ Output: plan or false
2: if γ0 ⊢RP= q then return plan := ⟨⟩; ▷ Check initial state
3: toadd := {(att, val) | att ∈ UA, ⟨u, e att, vset⟩ ∈ q, val ∈ vset } ▷ Values required in query
4: curu := {(att, val) | att ∈ UA, val ∈ att(u)} ▷ Current values of user
5: for each ug ∈ effUg(u) do curug := {(att, val) | att ∈ UA, val ∈ att(ug)} end for ▷ Current values of user’s effective groups
6: if (curu ∪ (

⋃
ug ∈ effUg(u)

curug)) − toadd ̸= ∅ then return false; ▷ Check if state γ0 has more values than query

7: ppreu := ∅; for each ug ∈ effUg(u) do ppreug := ∅; end for
8: for (each (att, val) ∈ toadd ∪ ppreu) do ▷ Positive precondition values for user
9: ppre′u := {(att1, val1) | ∃ ⟨ar, c, val⟩ ∈ canAddUatt. “val1 ∈ att1(u)” is a conjunct in c};

10: ppreu := (ppreu ∪ (ppre′u \ ppreu)) \ curu;
11: end for
12: for (each ug ∈ effUg(u)) do ▷ Positive precondition values for effective groups
13: for (each (att, val) ∈ toadd ∪ ppreug) do
14: ppre′ug := {(att1, val1) | ∃ ⟨ar, c, val⟩ ∈ canAddUGatt. “val1 ∈ att1(ug)” is a conjunct in c};
15: ppreug := (ppreug ∪ (ppre′ug \ ppreug)) \ curug ;
16: end for
17: end for

▷ Check if rules exists for values required
18: if ((∃(att, val) ∈ toadd ∪ ppreu ∪ (

⋃
ug ∈ effUg(u)

ppreug) \ (curu ∪ (
⋃

ug ∈ effUg(u)

curug))). ∄ ⟨ar, c, val⟩ ∈ canAddUatt ∪ canAddUGatt)then

return false;
▷ Find negation values in rules required to add values for the user and its effective groups

19: npreu := {(att1, val1) | ∃ (att, val) ∈ (toadd ∪ ppreu) \ curu. ∃ ⟨ar, c, val⟩ ∈ canAddUatt. “¬(val1 ∈ att1(u))” is a conjunct in c}
20: for each ug ∈ effUg(u) do npreug := {(att1, val1) | ∃ (att, val) ∈ (toadd ∪ ppreug) \ curug . ∃ ⟨ar, c, val⟩ ∈ canAddUGatt. “¬(val1 ∈ att1(ug))”

is a conjunct in c} end for
21: if ((npreu ∩ curu ̸= ∅) ∨ (∀ ug ∈ effUg(u). npreug ∩ curug ̸= ∅)) then return false; ▷ Negation in current values
22: G := ⟨V,E⟩; V := toadd ∪ ppreu ∪ (

⋃
ug ∈ effUg(u)

ppreug) \ (curu ∪ (
⋃

ug ∈ effUg(u)

curug)); E := ∅; ▷ Construct a directed graph

23: for each pair of nodes ((att1, val1), (att2, val2)) ∈ V do
24: if (((∃⟨ar, c, val2⟩ ∈ canAddUatt2 . “(val1 ∈ att1(u))” is a conjunct in c) ∨
25: (∃⟨ar, c, val1⟩ ∈ canAddUatt1 . “¬(val2 ∈ att2(u))” is a conjunct in c))
26: ∨
27: ((∃ ug ∈ effUg(u)). ((∃⟨ar, c, val2⟩ ∈ canAddUGatt2 . “(val1 ∈ att1(ug))” is a conjunct in c) ∨
28: (∃⟨ar, c, val1⟩ ∈ canAddUGatt1 . “¬(val2 ∈ att2(ug))” is a conjunct in c))))
29: then E := E ∪ {⟨(att1, val1), (att2, val2)⟩}; end if ▷ Add edges to the graph
30: end for
31: valset := toadd − (curu ∪ (

⋃
ug ∈ effUg(u)

curug)); ▷ Values in query not in state γ

32: if ∃(att1, val1) ∈ valset ∃⟨(att, val), (att1, val1)⟩ ∈ E. (att, val) /∈ valset then return false
33: else V := vset E := E − {⟨(att, val), (att1, val1)⟩ | (att, val) /∈ vset, (att1, val1) /∈ valset} end if
34: if graph G has a cycle then return false else return plan := sequence of administrative requests corresponding to the topological sort of G;

TABLE 7: Example Problem Instance for RP= in [rGURAG1+
– N]

Input: problem instance I = ⟨γ0, q⟩ Output: plan or false
ψ ∈ Ψ :
canAddUroomAcc = {⟨BuildAdmin, c++ ∈ e skills(u) ∧ 2.04 ∈ roomAcc(u), 1.2⟩ },
canAddUcollege = {⟨BuildAdmin, python ∈ e skills(u) ∧ 3.05 ∈ roomAcc(u), COE⟩},
canAddUskills = {⟨DeptAdmin, c ∈ e skills(u), python⟩},
canAddUGroomAcc = {⟨BuildAdmin, 3.02 ∈ roomAcc(ug), 1.2⟩ },
canAssign = {⟨DeptAdmin, G1 ∈ directUg(u), G3⟩ }
Queries:
q1 ∈ Q = {e roomAcc(u) = {2.04, 2.03, 3.02, 1.2}, e skills(u) = {c, c++,python}, e college(u) = {COS}}
q2 ∈ Q = {e roomAcc(u) = {2.04, 2.03, 3.02, 1.2}, e skills(u) = {c, c++}, e college(u) = {COS,COE}}

current state. After passing through all checks, the algorithm starts
creating a directed graph. Vertices (V) in the graph are attribute
value pair of the values required in the query q and the required
positive preconditions excluding the values in the current state.
EdgesE will be drawn in the direction defined in the for loop (line
23-30). If the attribute value pair (att1, val1) is in the negative
conjunct in administrative rule for (att2, val2) or (att2, val2) is
a positive conjunct in a rule to add (att1, val1), the edge is created
from (att2, val2) to (att1, val1). Since our query type is RP=,
it requires an additional check so that no extra values are added
to the user. Therefore, once the graph is created, we create a set
valset, which includes values required in query and not present in

the current state. If the created graph has vertex in valset having
incoming edge not from vertex in valset, algorithm returns false
(line 32). Otherwise it removes all the edges from vertices not
in valset. If cycles exists in the remaining graph then algorithm
returns false, else the set of administrative request corresponding
to the topological sort will return the plan.

Therefore, the overall reachability plan returned will be
planug from Algorithm 2 and plan from Algorithm 3.

Theorem 2. Reachability query type RP= for scheme
[rGURAG1+−D,SRd] is P.

Proof. Algorithm 2 and 3 describe the polynomial algorithms.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 08,2022 at 22:33:30 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3145358, IEEE
Transactions on Dependable and Secure Computing

GUPTA ET AL.: REACHABILITY ANALYSIS FOR ATTRIBUTES IN ABAC WITH GROUP HIERARCHY 12

Complexity: The algorithm takes polynomial time to create
directed graphs and then to compute topological sort. Its com-
plexity is O(|UG| × |canAssign| + ((

∑
att∈UA |SCOPEatt|) ×

(|canAddUatt| + |canAddUGatt| × |UG|))).

In case of RP⊇ query type for [rGURAG1+
−D,SRd], we

remove the extra checks to verify if no extra values are present in
current state (line 6). Further line 31-33 is not required as extra
values are allowed to be added to user. With these minor changes,
the complexity of RP⊇ for scheme [rGURAG1+

−D,SRd] is P.
It should be noted that RP= for [rGURAG1−D,SRd] do

not allow changes in group memberships of user. Therefore,
computation for this scheme will start directly from Algorithm
3, obviating the execution of Algorithm 2. The RP⊇ query for
[rGURAG1−D,SRd] will remove all extra conditions applied
in Algorithm 3 for RP⊇ scheme for [rGURAG1+−D,SRd] as
discussed above. Also, since rGURAG0 is a sub-problem of
rGURAG1 we can conjecture that RP= and RP⊇ for scheme
[rGURAG0−D,SRd] can be solved in polynomial time.

8 EXAMPLE PROBLEM INSTANCE

We will now illustrate the plan generation in two schemes dis-
cussed earlier with a sample input state and a set of reachability
queries. Figure 4 defines the common input for both the schemes.

Plan Generation for RP= in [rGURAG1+
– N]: Figure 5

shows attributes of user and groups along with user to group direct
membership. Table 7 defines set of administrative rules allowed in
scheme along with two reachability queries. We will first try to
find a reachability plan (if exists) for query q1 using Algorithm 1.

Initially, plan is set to empty ⟨⟩. The initial state is checked
to find if it has more attribute values than required in query q1. In
state γ0, the effective values of user are e roomAcc(u) = {2.04,
2.03, 3.02}, e skills(u) = {c, c++}, e college(u) = {COS}, which
are all required in query. The while loop checks if query q1 is
satisfied in state γ0, which is not true as some values are missing.
Now algorithm starts adding new values to the user or its effective
groups and also assign new groups to user based on administrative
rules defined in Table 7. The first rule requires effective skills
of user having value c++ and roomAcc attribute with value 2.04.
to add 1.2 value to roomAcc by administrative role BuildAdmin.
Since user satisfy these conditions and 1.2 value is not directly
assigned in roomAcc(u) and the value is required in q1, it adds
1.2 value to roomAcc(u). The administrative request add(Buil-
dAdmin, u, roomAcc, 1.2) is also appended to the plan. The
algorithm again goes through the while loop and checks if q1 is
satisfied. The user is still missing skills attribute value python. The
algorithm now tries to add group G3 to user u. The precondition
of canAssign rule is satisfied by user, but the effective values for
roomAcc attribute for group G3 are {3.05, 2.04}, which is not the
subset of values required in query. Hence, G3 cannot be assigned
to user u. Next, the algorithm checks rule for skills attribute to
add value python and finds that preconditions to add value python
are satisfied by user u. It appends the corresponding request add(
DeptAdmin, u, skills, python) to plan which results in total of
two requests in the plan. The algorithm again checks the new
state against q1 and finds the query is “strict” satisfied. It breaks
the while loop and returns plan = add(BuildAdmin, u, roomAcc,
1.2), add(DeptAdmin, u, skills, python).

We now check the satisfiability of query q2 with the same
initial state. Similar to q1, query is checked against initial state to

Fig. 4: Input Starting State (γ0 ∈ Γ)

Fig. 5: Initial State for RP= in [rGURAG1+
– N]

check extra values and value 1.2 for attribute roomAcc is added to
the user and requests is appended to the plan. Second rule allows
to add COE for attribute college, but the preconditions are not
satisfied by user. We try to add group G3 but it also adds extra
values which are not required in query. It can be noticed that
after all the administrative rules are checked, the query cannot be
satisfied and hence the algorithm returns false.

Plan Generation for RP= in [rGURAG1+
– D, SRd]:

Figure 6 shows user and group attributes along with user to group
direct membership. Table 8 defines the set of administrative rules
allowed in the scheme and three reachability queries. It should
be noted that the rules in Ψ have negation conjuncts and single
precondition with direct attributes or group memberships for each
attribute value pair or user group. We will start with Algorithm
2 to assign new groups to the user. Once groups are assigned,
attributes will be added to user or its newly computed effective
groups. If Algorithm 2 doesn’t add new groups, the computation
will still be done by Algorithm 3 with old effective groups.

Algorithm 2 creates group assignment plan (defined as
planug) to assign new groups to user. Two administrative rules
exists in canAssign relation. Since G3 is not directly assigned
to user u, precondition is satisfied and G3 has value python for
skill attribute, which is required in query q1, algorithm adds G3 to
the set of vertices Vug . Similarly group G5 is also added to Vug .
There are no more canAssign rules, hence the algorithm starts
adding edges to the graph. For (G3, G5) ∈ Vug , since G3 is a
negation conjunct in precondition to add G5, therefore, directed
edge is drawn from G5 to G3. As there are no other relevant
canAssign rules and vertices pair, it breaks the loop and creates a
topological sort of the graph. Sort will have {G5, G3} order and
the corresponding plan planug := assign(DeptAdmin, u, G5),
assign(DeptAdmin, u, G3) is returned. Before proceeding to
Algorithm 3, the request in planug must be executed to get
new effective groups of the user. Algorithm 3 is used to assign
attributes to user and newly computed effective groups (which
will now have group G5 and G3 along with G1 and G2). It first
checks if the query (q1) is satisfied in the current state (line 2)
which has new direct groups assigned using algorithm 2. Clearly
query q1 is satisfied with new group assignments only, hence the

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 08,2022 at 22:33:30 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3145358, IEEE
Transactions on Dependable and Secure Computing

GUPTA ET AL.: REACHABILITY ANALYSIS FOR ATTRIBUTES IN ABAC WITH GROUP HIERARCHY 13

TABLE 8: Example Problem Instance for RP= in [rGURAG1+
– D, SRd]

Input: problem instance I = ⟨γ0, q⟩ Output: plan or false
ψ ∈ Ψ :
canAddUroomAcc = {⟨BuildAdmin, c++ ∈ skills(u) ∧ ¬(2.04 ∈ roomAcc(u)), 1.2⟩},
canAddUskills = {⟨DeptAdmin, c ∈ skills(u), python⟩},
canAddUcollege = {⟨BuildAdmin, matlab ∈ skills(u), BUS⟩},
canAddUskills = {⟨DeptAdmin, c ∈ skills(u) ∧ COS ∈ college(u), matlab⟩}
canAddUGcollege = {⟨BuildAdmin, python ∈ skills(ug) ∧ ¬(2.04 ∈ roomAcc(ug)), COE⟩},
canAssign = {⟨DeptAdmin, G1 ∈ directUg(u), G3⟩, ⟨DeptAdmin, ¬(G3 ∈ directUg(u)), G5⟩}
Queries:
q1 ∈ Q = {e roomAcc(u) = {2.04, 2.03, 3.02}, e skills(u) = {c, c++,python}, e college(u) = {COS,COE}}
q2 ∈ Q = {e roomAcc(u) = {2.04, 2.03, 3.02, 1.2}, e skills(u) = {c, c++,python}, e college(u) = {COS,COE}}
q3 ∈ Q = {e roomAcc(u) = {2.04, 2.03, 3.02}, e skills(u) = {c, c++,python,matlab}, e college(u) = {COS,COE,BUS}}

reachability plan for group assignments planug is returned.
For queries q2 and q3, group assignment plan planug is

created similarly as above. Therefore, we will follow Algorithm 3
with user’s effective groups as G1, G2, G3 and G5. For q2, current
state do not have value 1.2 for roomAcc attribute. The algorithm
first computes toadd, which is the set of attribute value pair in q2:
toadd = {⟨roomAcc, 2.04⟩ , ⟨roomAcc, 2.03⟩,

⟨roomAcc, 3.02⟩ , ⟨roomAcc, 1.2⟩,
⟨skills, c⟩, ⟨skills, c++⟩, ⟨skills, python⟩,
⟨college, COS⟩, ⟨college, COE⟩}

It then calculates the current attribute value pair for user and
its effective groups (Line 4-5):
curu = {⟨roomAcc, 2.04⟩ , ⟨skills, c⟩, ⟨skills, c++⟩,

⟨college, COS⟩}
curG1 = {⟨roomAcc, 2.03⟩} curG2 = {⟨roomAcc, 3.02⟩}
curG3 = {⟨roomAcc, 2.04⟩ , ⟨skills, python⟩}
curG5 = {⟨college, COE⟩}
The algorithm checks if the current attributes of user and its
effective groups are not extra than the values required in the
query. Clearly, for query q2, no extra values are present in current
state. The algorithm next computes the positive conjuncts in the
preconditions required to add the values in toadd. It first calculates
for each attribute value pair in toadd and then recalculates for
each positive preconditions attribute value pair also. For example,
positive conjunct for user to add ⟨roomAcc, 1.2⟩ in toadd is
⟨skills, c++⟩ and for ⟨skills, python⟩ in toadd is ⟨skills, c⟩.
Therefore (using line 9), ppre′u := {⟨skills, c++⟩, ⟨skills, c⟩}.
It then recomputes ppreu by combining its values with newly
computed ppre′u after removing values already present in ppreu
or curu. In this case, no new value is added in ppreu, as both
the values in ppre′u are already present in curu. Similarly, the
positive preconditions are calculated for each effective groups.
ppreu = {}, ppreG1

= ppreG2
= ppreG5

= {⟨skills, python⟩}
ppreG3

= {}
Next, in line 18, the algorithm checks if rules exists for values
required in toadd and positive preconditions excluding the current
values. Clearly, rule exists for ⟨roomAcc, 1.2⟩ pair and all
other values are already present in user or its effective groups.
It then calculates negative conjuncts for user and its effective
groups in preconditions to add values in toadd and positive
preconditions excluding current state. For user, ⟨roomAcc, 1.2⟩
has negation conjunct ⟨roomAcc, 2.04⟩ in canAddUroomAcc.
Remaining negation conjuncts are as follows:
npreu = {⟨roomAcc, 2.04⟩}

Fig. 6: Initial State for RP= in [rGURAG1+
– D, SRd]

npreG1 = npreG2 = npreG3 = {⟨roomAcc, 2.04⟩}
npreG5 = {}
Line 21 checks if the negation conjuncts exists in current values of
either user or its effective groups. User has {⟨roomAcc, 2.04⟩}
pair in curu, therefore, roomAcc attribute cannot get value 1.2
required in q2 since only single rule exists for user or groups.
Hence, the algorithm returns false for query q2. For query q3,
toadd values are:
toadd = {⟨roomAcc, 2.04⟩ , ⟨roomAcc, 2.03⟩,

⟨roomAcc, 3.02⟩ , ⟨skills, c⟩, ⟨skills, c++⟩,
⟨skills, python⟩, ⟨skills, matlab⟩
⟨college, COS⟩, ⟨college, COE⟩, ⟨college, BUS⟩}

The current values are still the same as defined in query q2. The
algorithm calculates the positive conjuncts in preconditions as:
ppreu = {⟨skills, matlab⟩}
ppreG1

= ppreG2
= ppreG5

= {⟨skills, python⟩}
ppreG3

= {}
The negation conjuncts are calculated as:
npreu = {}, npreG1

= npreG2
= npreG3

= {⟨roomAcc, 2.04⟩}
npreG5

= {}
These negation values are not present in user or all of
its effective groups. Therefore, the algorithm creates directed
graph (line 22-30) with vertices V := {⟨skills, matlab⟩},
{⟨college, BUS⟩}. Edge in E is drawn from {⟨skills, matlab⟩}
to {⟨college, BUS⟩} as {⟨skills, matlab⟩} is a precondition
conjunct in rule to add {⟨college, BUS⟩}. Line 31 calculates
valset which in this case is same as V . Since no cycle exists in
the graph, topological sort is created. The final reachability plan
to satisfy the query q3 is plan := assign(DeptAdmin, u, G5),
assign(DeptAdmin, u, G3), add(DeptAdmin, u, skills, mat-
lab), add(BuildAdmin, u, college, BUS). The administrative re-
quests must be executed as ordered in the reachability plan.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 08,2022 at 22:33:30 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3145358, IEEE
Transactions on Dependable and Secure Computing

GUPTA ET AL.: REACHABILITY ANALYSIS FOR ATTRIBUTES IN ABAC WITH GROUP HIERARCHY 14

9 EXPERIMENTAL RESULTS

This section describes the performance evaluation on Algorithms
1, 2 and 3 (discussed in Section 7) after varying number of
parameters and shows the analysis of the results drawn from
these experiments. We measure the time it takes for a successful
reachability plan to generate under different rGURAG instances
once a query is requested. We implemented the algorithms in
Python using PyCharm1. We generated a random pool of attributes
and their values for user and groups in the system. The initial state
of the system is assigned a user, set of groups, administrative
rules allowed in different schemes, group hierarchy, scope of
attributes etc. where all are generated randomly. Reachability
query and administrative rules are also randomly generated based
on the attributes in initial state (we do not want to have the
query be satisfied in the initial state itself). There are several
dynamic parameters which we changed to scale the algorithms:
attr denotes the number of attributes, scope represents the size
of the range for values of attributes. ppre and npre represent the
number of positive and negative conjuncts in a rule precondition
respectively. d represents the total number of desired attribute
and value pairs specified in the reachability query which are not
already available in the initial state. For example, assume in initial
state, ATTR = {College, Skill} and U = {Bob}. In the initial
state, College(Bob) = {COS} and Skill(Bob) = {c, Python}. If
the query requires, College(Bob) = {COS, COR} and Skill(Bob)
= {c, Python, c++, matlab}, then the value of d would be 3 as
the number of attribute and value pairs that are absent in the
initial state is 3. g denotes the number of user groups in the
system. We generated administrative rules based on the values
in d. Roughly half of the number of items in the query (for
example, with d = 30 for Algorithm 1 results in Figure 7a) would
be for canAddUA and the other half canAddUGA and a couple
for canAssign. These numbers are approximate since the input
and query statements are randomly generated. Therefore, the rules
which are based off of those may vary as well. We vary all these
parameters in Algorithms performance evaluation under different
combinations as explained below. Each data reported is an average
over 500 instances generated using the same parameter values.
Plan generation execution time was measured on Apple MacBook
Pro with a M1 processor with 16 GB of RAM.

Results for Algorithm 1: The evaluation results are in
Figures 7a, 7b and 7c. We vary different parameters except
npre in Algorithm1 which denotes the number of negations in
preconditions. These negation preconditions are not permitted in
the rule conditions of Algorithm 1. Figure 7a shows the impact
of d and ppre on execution time. We plot the number of ppre
on x-axis and the execution time (in ms) on y-axis. We plot
each curve for a different value of d. For these graphs we use,
attr = 10, scope = 40, g = 4. As expected, the execution time
increases with the increase of number of ppre as it more takes
time to check the required values for the attributes included in
precondition conjuncts of administrative rules with the increasing
attribute value pair required in query (denoted by d). For instance,
the execution time for attr = 10, scope = 40 with ppre = 5 and
d = 30 is nearly .22 ms, which is much higher than for same
parameters but d = 10. The major reason is as the reachability
query has more attribute values pair to be satisfied, it will take
more time to generate a feasible plan.

1. https://www.jetbrains.com/pycharm/

(a) Varying ppre and d

(b) Varying attr and scope

(c) Varying attr and groups

Fig. 7: Performance of Algorithm 1 with Different Parameters

Figure 7b shows the impact on execution time when we vary
the scope and number of attributes attr (shown as Attributes).
We plot the number of attributes on the x-axis and the time
consumed for plan on the y-axis. In all problem instances, we
ran the experiment with d =10, g = 4 and ppre = 5. Our results
show that there is no trend of time increase as the number of
attributes increase. However, the total time to execute a query
in general is less with larger scope. As we are generating the
query randomly with the fixed d, the time for solving the query
shall overall be small as we have larger initial state due to more
attributes or scope. Similarly, as shown in Figure 7c, we vary the
number of attributes and number of groups in the initial state. For
all instances, we use d = 10, scope = 40, ppre = 5. We observe, for
highest number of groups, g = 20, the execution time constantly
remains high except for attr = 40. It is possible that with the large
number of attributes in the initial state, the query is satisfied in
early states yielding a fast plan execution. However, the dynamic
generator with different queries, initial states and administrative
rules, the graphs will not be able to provide a set pattern but it is
fair to conjecture that overall time is still less than .30 ms with

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 08,2022 at 22:33:30 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3145358, IEEE
Transactions on Dependable and Secure Computing

GUPTA ET AL.: REACHABILITY ANALYSIS FOR ATTRIBUTES IN ABAC WITH GROUP HIERARCHY 15

large number of attributes, values and groups.
Results for Algorithms 2 & 3: The results for Algorithm 2 are
shown in Figures 8a and 8b and for Algorithm 3 are illustrated
in Figures 8c and 8d. We calculate the plan generation execution
time based on the number of positive ppre and negation conjuncts
(npre) prescribed in a rule precondition. We perform calculations
for increasing numbers of npre followed by combined ppre and
npre in equal numbers. In practical scenarios, we assume that an
administrative rule will not have more than 10 conjuncts to be
satisfied for a given attribute value pair or group. Figure 8a shows
the impact of negative precondition conjuncts npre (on x-axis)
and d on the execution time for Algorithm 2. The curve is nearly
flat for the different values of npre with same d. We observe that
checking attribute values that are not in the current state (due
to npre requirement) for user does not take much time while
the execution time increases with increasing number of required
attribute-value pair in query that are not in the current state since
more values are to be satisfied. Figure 8c captures the behaviour
for Algorithm 3 with the same parameter values as for Algorithm
2. It shows similar behavior except the increase in the execution
time to run Algorithm 3. This is due to the fact that Algorithm
3 is more complex and requires checking all the different pre-
conditions before generating the plan.

Figure 8b and 8d evaluate the impact of changing both npre
and ppre respectively for Algorithms 2 and 3. We plot the number
of ppre and npre conjuncts on x-axis against execution time and
observe the curves for d = 10 to 30. The plan generation time
increases in both graphs as the required attribute values in query
increase with d. It happens as the expected values for satisfying
query in current state are higher when the value of d is large. The
calculation time for the same parameters is higher in the graphs
for Algorithm 3. For all the graphs in Figure 8, we see the increase
in consumed time when we increase the value of d.

The parameters assumed in our set of experiments are realistic
in practical situations, for example, we do not expect users to
carry 1000s of attributes or an organization having 100s of groups
or administrative rules. However, it does not limit the scalability
of our algorithms and the reachability problems can be solved in
very reasonable amount of time.

10 CONCLUSION AND FUTURE WORK

Attributes based access control defines permissions of entities
based on their attributes. In this work, we presented reachability
analysis for effective attributes of the user based on the direct
attributes assignment to the user or its member user groups. We
first stated the HGABAC model and GURAG administrative
model to provide some background. We defined a restricted form
of GURAG, referred as rGURAG and classified three schemes
rGURAG0

, rGURAG1
and rGURAG1+

to discuss different
reachability solutions. In general, we proved the reachability prob-
lem for rGURAG scheme is intractable as PSPACE-complete
but with certain restrictions, polynomial time algorithms can
also be achieved. We empirically evaluated the algorithms under
different varying parameters to understand its practicality and use
in real world scenarios. In future, we can develop more polynomial
algorithms for some restricted forms and perform reachability
analysis on other types of queries like effective user groups or
minimum number of administrative requests to satisfy query.

(a) Varying npre and d for Algorithm 2

(b) Varying npre & ppre with d for Algorithm 2

(c) Varying npre and d for Algorithm 3

(d) Varying npre & ppre with d for Algorithm 3

Fig. 8: Performance of Algorithms 2 & 3 with Diff. Parameters

ACKNOWLEDGEMENT

This work is partially supported by the NSF Grants HRD-1736209
at UTSA and 2025682 at TTU. We are also grateful to Dr.
Mahmoud Abdelsalam for his critical comments during the early
phase of this work.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 08,2022 at 22:33:30 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3145358, IEEE
Transactions on Dependable and Secure Computing

GUPTA ET AL.: REACHABILITY ANALYSIS FOR ATTRIBUTES IN ABAC WITH GROUP HIERARCHY 16

REFERENCES

[1] R. S. Sandhu and P. Samarati, “Access control: principle and practice,”
IEEE communications magazine, vol. 32, no. 9, pp. 40–48, 1994.

[2] R. S. Sandhu, “Lattice-based access control models,” IEEE Computer,
vol. 26, no. 11, pp. 9–19, 1993.

[3] R. S. Sandhu et al., “Role-based access control models,” IEEE Computer,
vol. 29, no. 2, pp. 38–47, 1996.

[4] X. Jin, R. Krishnan, and R. Sandhu, “A unified attribute-based access
control model covering DAC, MAC and RBAC,” in Proc. of IFIP DBSec.
Springer, 2012, pp. 41–55.

[5] L. Wang et al., “A logic-based framework for attribute based access
control,” in Proc. of ACM FMSE workshop, 2004, pp. 45–55.

[6] H.-b. Shen and F. Hong, “An attribute-based access control model for
web services,” in Proc. of IEEE PDCAT, 2006, pp. 74–79.

[7] V. C. Hu, D. Ferraiolo, R. Kuhn, A. R. Friedman, A. J. Lang, M. M.
Cogdell, A. Schnitzer, K. Sandlin, R. Miller, K. Scarfone et al., “Guide
to attribute based access control (ABAC) definition and considerations,”
NIST special publication, vol. 800, no. 162, 2014.

[8] V. C. Hu, D. R. Kuhn, and D. F. Ferraiolo, “Attribute-based access
control,” IEEE Computer, vol. 48, no. 2, pp. 85–88, 2015.

[9] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryp-
tion for fine-grained access control of encrypted data,” in Proc. of ACM
CCS, 2006, pp. 89–98.

[10] B. Lang, I. Foster, F. Siebenlist, R. Ananthakrishnan, and T. Freeman,
“A flexible attribute based access control method for grid computing,”
Journal of Grid Computing, vol. 7, no. 2, p. 169, 2009.

[11] E. Yuan and J. Tong, “Attributed based access control (ABAC) for web
services,” in Proc. of IEEE ICWS, 2005.

[12] K. Frikken, M. Atallah, and J. Li, “Attribute-based access control with
hidden policies and hidden credentials,” IEEE Transactions on Comput-
ers, vol. 55, no. 10, pp. 1259–1270, 2006.

[13] M. V. Tripunitara and N. Li, “The foundational work of Harrison-Ruzzo-
Ullman revisited,” IEEE TDSC, vol. 10, no. 1, pp. 28–39, 2013.

[14] L. Cirio, I. F. Cruz, and R. Tamassia, “A role and attribute based access
control system using semantic web technologies,” in Proc. of OTM
Confederated International Conferences ”On the Move to Meaningful
Internet Systems”. Springer, 2007, pp. 1256–1266.

[15] M. J. Covington and M. R. Sastry, “A contextual attribute-based access
control model,” in Proc. of OTM Confederated International Confer-
ences” On the Move to Meaningful Internet Systems”. Springer, 2006,
pp. 1996–2006.

[16] M. Gupta and R. Sandhu, “Authorization framework for secure cloud
assisted connected cars and vehicular internet of things,” in Proceedings
of the 23nd ACM on Symposium on Access Control Models and Tech-
nologies, 2018, pp. 193–204.

[17] M. Gupta et al., “An attribute-based access control model for secure big
data processing in hadoop ecosystem,” in Proceedings of the Third ACM
Workshop on Attribute-Based Access Control, 2018, pp. 13–24.

[18] ——, “Dynamic groups and attribute-based access control for next-
generation smart cars,” in Proceedings of the Ninth ACM Conference
on Data and Application Security and Privacy, 2019, pp. 61–72.

[19] M. Gupta, F. M. Awaysheh, J. Benson, M. Al Azab, F. Patwa, and
R. Sandhu, “An attribute-based access control for cloud-enabled indus-
trial smart vehicles,” IEEE Transactions on Industrial Informatics, 2020.

[20] M. Gupta, J. Benson, F. Patwa, and R. Sandhu, “Secure V2V and
V2I communication in intelligent transportation using cloudlets,” IEEE
Transactions on Services Computing, 2020.

[21] S. Bhatt, T. K. Pham, M. Gupta, J. Benson, J. Park, and R. Sandhu,
“Attribute-based access control for aws internet of things and secure
industries of the future,” IEEE Access, vol. 9, pp. 107 200–107 223, 2021.

[22] D. Servos and S. L. Osborn, “HGABAC: Towards a formal model of
hierarchical attribute-based access control,” in Proc. of International
Symposium on FPS. Springer, 2014, pp. 187–204.

[23] M. Gupta and R. Sandhu, “The GURAG administrative model for user
and group attribute assignment,” in Proc. of NSS. Springer, 2016, pp.
318–332.

[24] R. Sandhu, V. Bhamidipati, and Q. Munawer, “The ARBAC97 model
for role-based administration of roles,” ACM TISSEC, vol. 2, no. 1, pp.
105–135, 1999.

[25] X. Jin, R. Krishnan, and R. Sandhu, “A role-based administration model
for attributes,” in Proc. of ACM SRAS workshop, 2012, pp. 7–12.

[26] ——, “Reachability analysis for role-based administration of attributes,”
in Proc. of ACM DIM workshop, 2013, pp. 73–84.

[27] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman, “Protection in operating
systems,” Communications of the ACM, vol. 19, no. 8, pp. 461–471,
1976.

[28] M. V. Tripunitara and N. Li, “A theory for comparing the expressive
power of access control models,” Journal of Computer Security, vol. 15,
no. 2, pp. 231–272, 2007.

[29] N. Li and M. V. Tripunitara, “Security analysis in role-based access
control,” ACM TISSEC, vol. 9, no. 4, pp. 391–420, 2006.

[30] N. Li, J. C. Mitchell, and W. H. Winsborough, “Beyond proof-of-
compliance: security analysis in trust management,” Journal of the ACM
(JACM), vol. 52, no. 3, pp. 474–514, 2005.

[31] R. S. Sandhu, “The schematic protection model: its definition and
analysis for acyclic attenuating schemes,” Journal of the ACM (JACM),
vol. 35, no. 2, pp. 404–432, 1988.

[32] A. Sasturkar, P. Yang, S. D. Stoller, and C. Ramakrishnan, “Policy
analysis for administrative role based access control,” in Proc. of IEEE
Computer Security Foundations workshop, 2006, pp. 13–pp.

[33] R. S. Sandhu, “The typed access matrix model,” in Proc. of IEEE
Symposium on Security and Privacy, 1992, pp. 122–136.

[34] R. J. Lipton and L. Snyder, “A linear time algorithm for deciding subject
security,” Journal of the ACM (JACM), vol. 24, no. 3, pp. 455–464, 1977.

[35] A. Schaad and J. D. Moffett, “A lightweight approach to specification
and analysis of role-based access control extensions,” in Proc. of ACM
SACMAT, 2002, pp. 13–22.

[36] S. Jha, N. Li, M. Tripunitara, Q. Wang, and W. Winsborough, “Towards
formal verification of role-based access control policies,” IEEE TDSC,
vol. 5, no. 4, pp. 242–255, 2008.

[37] P. Rajkumar and R. Sandhu, “Safety decidability for pre-authorization
usage control with finite attribute domains,” IEEE TDSC, vol. 13, no. 5,
pp. 582–590, 2016.

[38] S. Jajodia, P. Samarati, and V. Subrahmanian, “A logical language for
expressing authorizations,” in Proc. of IEEE Symposium on Security and
Privacy, 1997, pp. 31–42.

[39] L. Cholvy and F. Cuppens, “Analyzing consistency of security policies,”
in Proc. of IEEE Symposium on Security and Privacy, 1997, pp. 103–112.

[40] A. K. Bandara, E. C. Lupu, and A. Russo, “Using event calculus to
formalise policy specification and analysis,” in Proc. of IEEE POLICY
workshop, 2003, pp. 26–39.

[41] T. Jaeger, X. Zhang, and A. Edwards, “Policy management using access
control spaces,” ACM TISSEC, vol. 6, no. 3, pp. 327–364, 2003.

[42] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C. Tschantz,
“Verification and change-impact analysis of access-control policies,” in
Proc. of IEEE ICSE, 2005, pp. 196–205.

[43] S. D. Stoller, P. Yang, C. R. Ramakrishnan, and M. I. Gofman, “Efficient
policy analysis for administrative role based access control,” in Proc. of
ACM CCS, 2007, pp. 445–455.

[44] S. D. Stoller, P. Yang, M. I. Gofman, and C. Ramakrishnan, “Symbolic
reachability analysis for parameterized administrative role-based access
control,” Computers & Security, vol. 30, no. 2, pp. 148–164, 2011.

[45] P. Gupta, S. D. Stoller, and Z. Xu, “Abductive analysis of administrative
policies in rule-based access control,” IEEE TDSC, 2014.

[46] J. B. Joshi, E. Bertino, and A. Ghafoor, “An analysis of expressiveness
and design issues for the generalized temporal role-based access control
model,” IEEE TDSC, vol. 2, no. 2, pp. 157–175, 2005.

[47] J. Crampton and G. Loizou, “Administrative scope: A foundation for
role-based administrative models,” ACM TISSEC, 2003.

[48] W. J. Savitch, “Relationships between nondeterministic and deterministic
tape complexities,” Journal of computer and system sciences, vol. 4,
no. 2, pp. 177–192, 1970.

[49] C. Bäckström and B. Nebel, “Complexity results for SAS+ planning,”
Computational Intelligence, vol. 11, no. 4, pp. 625–655, 1995.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 08,2022 at 22:33:30 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3145358, IEEE
Transactions on Dependable and Secure Computing

GUPTA ET AL.: REACHABILITY ANALYSIS FOR ATTRIBUTES IN ABAC WITH GROUP HIERARCHY 17

Maanak Gupta is an Assistant Professor in
Computer Science at Tennessee Technological
University, Cookeville, USA. He received M.S.
and Ph.D. in Computer Science from the Uni-
versity of Texas at San Antonio (UTSA) and
has also worked as a postdoctoral fellow at the
Institute for Cyber Security (ICS) at UTSA. His
primary area of research includes security and
privacy in cyber space focused in studying foun-
dational aspects of access control and their ap-
plication in technologies including cyber physical

systems, cloud computing, IoT and Big Data. He has worked in devel-
oping novel security mechanisms, models and architectures for next
generation smart cars, smart cities, intelligent transportation systems
and smart farming. He holds a B.Tech degree in Computer Science
and Engineering from Kuruskhetra University, India, and an M.S. in
Information Systems from Northeastern University, Boston.

Ravi Sandhu is the founding Executive Director
and Chief Scientist at the Institute for Cyber Se-
curity at the University of Texas at San Antonio,
TX, where he holds the Lutcher Brown Endowed
Chair in Cyber Security. He is a fellow of the
ACM, IEEE and AAAS and an inventor on 30
patents. He was the past Editor-in-Chief of the
IEEE Transactions on Dependable and Secure
Computing, past founding Editor-in-Chief of the
ACM Transactions on Information and System
Security and a past Chair of ACM SIGSAC. He

founded ACM CCS, SACMAT and CODASPY, and has been a leader
in numerous other security conferences. His research has focused on
security models and architectures, including the seminal role-based
access control model. His papers have accumulated over 46,000 Google
Scholar citations, including over 9,500 citations for the RBAC96 paper.

Tanjila Mawla is a doctoral student in the De-
partment of Computer Science at Tennessee
Technological University, Cookeville, USA. Her
area of interests include access control, formal
security models, and enforcement mechanisms
for smart ecosystems.

James Benson received the B.Sc. and M.Sc.
degrees in Physics from Clarkson University, in
2007 and 2009, respectively, and the M.Sc. de-
gree in Electrical Engineering from The Univer-
sity of Texas at San Antonio (UTSA), in 2016.
He has worked at the Texas Renewable Energy
Institute (TSERI) and the Open Cloud Institute
(OCI), UTSA, where he was assisting with data
analytics and various research projects. He is
currently working as a Technology Research An-
alyst II with the Institute for Cyber Security (ICS)

and the Center for Security and Privacy Enhanced Cloud Computing (C-
SPECC), UTSA. His research interests include cyber physical systems,
cloud computing, and automation.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 08,2022 at 22:33:30 UTC from IEEE Xplore. Restrictions apply.

